import networkx as nx from networkx.algorithms import community # for community structure later import collections from matplotlib import pyplot as plt from networkx.algorithms import approximation as app import operator # from networkx.generators.community import LFR_benchmark_graph import math import time from itertools import repeat import copy import pickle import random import numpy as np import pandas as pd from functools import reduce from scipy.special import comb, perm from itertools import repeat import copy import time import os import csv import json import requests import traceback from itertools import combinations from collections import defaultdict from collections import deque from optparse import OptionParser ###################################### # STEP 0: Initial graph ## ###################################### # file = open('./generate/Graph_gpickleSCS.gpickle', 'rb') # Graph=pickle.load(file) ''' 准备数据 ''' SCHEDULER_BASE_URL = os.getenv("SCHEDULER_BASE_URL") BACKEND_BASE_URL = os.getenv("BACKEND_BASE_URL") missionId = os.getenv("missionId") planId = os.getenv("planId") headers = { "Content-Type": "application/json", # 明确声明数据格式 "Accept": "application/json" # 声明期望的响应格式 } params = { "missionId": missionId, "planId": planId, } print("[output]", json.dumps({'msg': 'started'}), flush=True) response = requests.get(SCHEDULER_BASE_URL + '/fetchData', params=params, headers=headers) fetchedData = response.json() if not fetchedData: # 此处应当放置错误报告 quit() # fetchedData: {'nodes': [] , 'edges': []} '''准备数据(完毕)''' # 更改为从flask获取数据 input_nodes = [] for line in fetchedData['nodes']: # 清空原有meta line['meta'] = [] input_nodes.append([int(line['id']), str(line['type']).upper()]) input_edges = [] for line in fetchedData['edges']: # 清空原有meta line['meta'] = [] input_edges.append([int(line['from']), int(line['to'])]) # 检测节点编号,本程序要求从0起 flag = True for node in input_nodes: if int(node[0]) == 0: flag = False if flag: # 原始数据不从0开始,则所有节点的id均减一,同时边的节点id也减一 for node in input_nodes: node[0] = int(node[0]) - 1 # 同时修改原始输入数据 for node in fetchedData['nodes']: node['id'] = int(node['id']) - 1 for edge in input_edges: edge[0] = int(edge[0]) - 1 edge[1] = int(edge[1]) - 1 for edge in fetchedData['edges']: edge['from'] = int(edge['from']) - 1 edge['to'] = int(edge['to']) - 1 # print("测试输出节点和边") # print(input_nodes) # print(input_edges) # file = open('nodes.csv', 'r') # idx = 0 # for line in file: # input_nodes.append([idx, line.replace('\n', '')]) # idx += 1 # file.close() # file = open('edges.csv', 'r') # csvfile = csv.reader(file) # idx = 0 # for line in csvfile: # input_edges.append([int(line[0]), int(line[1])]) Graph = nx.Graph() for i in input_nodes: Graph.add_nodes_from([i[0]],type=i[1]) for i in input_edges: #G.add_weighted_edges_from([(i,j,random.random())]) Graph.add_edges_from([(i[0], i[1])]) ###### 手动输入图结构 ########### ''' Graph = nx.DiGraph() nodesfile = open('./nodes', 'r') for line in nodesfile: nodeline = line.replace('\n','').split(',') Graph.add_node(int(nodeline[0]), type = nodeline[1]) edgefile = open('./edges', 'r') for line in edgefile: edgeline = line.replace('\n', '').split(',') Graph.add_edges_from([(int(edgeline[0]), int(edgeline[1]))]) ''' ############################### G = Graph.to_undirected() # 无向图 graphname = 'ori' + str(random.randint(10000, 99999)) ## remove self loops & degree = 0 # G.remove_edges_from(G.selfloop_edges(G, data=True)) #ckb change isola = [k for k in nx.isolates(G)] G.remove_nodes_from(isola) Dict_Centrality = nx.degree_centrality(G) Centrality = list(Dict_Centrality.values()) # degree centerality Name = list(Dict_Centrality.keys()) A = nx.adjacency_matrix(G) # A = matix #code for search SDI nodes=Graph.nodes li = np.array(nx.adjacency_matrix(Graph).todense())# 转换为numpy矩阵是因为原始的格式不支持A[i][j]形式的索引 class GrfAllEdge(): # 定义方法,重点是items列表用作栈 def __init__(self, total): self.total = total self.li = li # 使用局部邻接矩阵 self.SDIi = [] def bfs_paths(self,start,goal,max_depth=5): if start == goal: return queue = deque([(start,[start])]) while queue: current,path = queue.popleft() if len(path) > max_depth: continue # 获取栈顶的类型,防止D到S的路径 tp_current = Graph._node[path[-1]]['type'] for next_node in range(self.total): if self.li[current][next_node] == 1 and next_node not in path: if len(path) >= max_depth: continue tp_next = Graph._node[next_node]['type'] if tp_current == 'D' and tp_next == 'S': continue new_path = list(path) # 复制当前路径 new_path.append(next_node) # 添加新节点到路径 if next_node == goal: # 如果下一个节点是目标节点 self.SDIi.append(new_path) # 添加到解决方案路径列表 else: queue.append((next_node, new_path)) # 将新路径添加到队列 def get_oc(node): #get SDI nodes SensSet, DeciSet, InfluSet = [], [], [] for index in range(len(node)): tps = Graph._node[index]['type'] if tps == 'S': SensSet.append(index) elif tps == 'D': DeciSet.append(index) elif tps == 'I': InfluSet.append(index) #get OC by DFS OC_ALL = [] for orig in SensSet: #sensor nodes for goal in InfluSet: #influencer nodes edge = GrfAllEdge(len(node)) edge.bfs_paths(orig,goal) OC_ALL.extend(edge.SDIi) return OC_ALL # 提取社团中的节点编号 def get_community_nodes(community): return [node[0] for node in community] def get_communities_oc(communities): communities_oc = {} for community_name, community_nodes in communities.items(): community_nodes_ids = get_community_nodes(community_nodes) communities_oc[community_name] = get_oc(community_nodes_ids) return communities_oc #转换作战链数为相对作战链矩阵 def transform_matrix(matrix): # 获取矩阵形状和扁平化的矩阵 rows, cols = matrix.shape flat_matrix = matrix.flatten() # 获取非零元素及其索引 non_zero_indices = np.where(flat_matrix != 0)[0] non_zero_elements = flat_matrix[non_zero_indices] # 获取唯一值及其反向索引,用于构建排名 unique_values, inverse_indices = np.unique(-non_zero_elements, return_inverse=True) # 对唯一值排名,这里使用负数是因为我们希望降序排列 ranks = np.zeros_like(non_zero_elements, dtype=int) for i in range(len(unique_values)): ranks[inverse_indices == i] = i + 1 # 将排名映射回原始矩阵位置 ranked_non_zero_elements = np.zeros_like(flat_matrix, dtype=int) ranked_non_zero_elements[non_zero_indices] = ranks # 调整矩阵,将零元素的排名设置为最大排名加一 max_rank = np.max(ranks) ranked_non_zero_elements[ranked_non_zero_elements == 0] = max_rank + 1 # 重新形成原始矩阵的形状 ranked_matrix = ranked_non_zero_elements.reshape(rows, cols) for i in range(len(ranked_matrix)): for j in range(len(ranked_matrix)): if i == j: ranked_matrix[i][j] = 0 return ranked_matrix #缩小作战链矩阵的算法 def Matrix_shrink_oc(oc_temp,ii,jj): k1 = oc_temp[:,ii] k2 = oc_temp[:,jj] dd = np.delete(oc_temp,[ii,jj],1) dd = np.delete(dd,[ii,jj],0) kk = np.maximum(k1,k2) kk = np.delete(kk,[ii,jj],0) m1 = np.vstack([dd,kk]) m2 = np.append(kk,0) shrank = np.vstack([m1.T,m2]) return shrank def main_function(): ###################################### # STEP 1: Identification of sources ## ###################################### # print('##### STEP 1 #####') # print('--------------------') start_s1 = time.perf_counter() source = [] sink = [] iso = [] leaf = [] nodetemp = list(G.nodes) count_s1 = 0 # count nodes for i in nodetemp: count_s1 += 1 # if count_s1 % 1000 == 0: # calculate time per 1000 nodes # print('Time Elapsed--- ' + str((time.perf_counter() - start_s1)) + ' Node:' + str(count_s1) + '/' + str( # len(G)) + '\n') nei = list(G.neighbors(i)) iso_count = 0 source_count = 0 sink_count = 0 if len(nei) == 1: # leaf leaf.append(i) continue for ii in nei: # counter ''' node > neibour:source++ node == neibour:isolate++ ''' if Dict_Centrality.get(i) > Dict_Centrality.get(ii): source_count += 1 elif Dict_Centrality.get(i) == Dict_Centrality.get(ii): iso_count += 1 source_count += 1 # ? else: sink_count += 1 continue if iso_count == G.degree(i): # all the if all(Centrality[Name.index(p)] == Centrality[Name.index(i)] for p in list(G.neighbors(i))): # clique if not any(w in source for w in list(G.neighbors(i))): # 顺序的问题? source.append(i) # get one as hub, the other are inner members Centrality[Name.index(i)] += 0.5 # additive value to this hub else: iso.append(i) # non-clique if source_count == G.degree(i): if i not in iso and i not in source: # source: greater than at least one neighbor in centrality score source.append(i) if sink_count == G.degree(i) & G.degree(i) > 1: sink.append(i) # 完成第一步,进度20% print("[output]", json.dumps({'msg': 'progress', 'data': 20}), flush=True) r_source = len(source) / len(G) # proportion of source r_sink = len(sink) / len(G) # proportion of sink inner = len(G) - len(source) - len(sink) - len(iso) - len(leaf) ############################################################# # STEP 2: Propagation and Formulation of Local Communities ## ############################################################# # print('##### STEP 2 #####') # print('--------------------') start_s2 = time.perf_counter() History = [[] for i in repeat(None, len(nx.nodes(G)))] # H = (history,time) community = [[] for i in repeat(None, len(source))] # X = (source_node,time) t = 0 tmax = 100 time_record = [] for i in range(len(source)): community[i].append((source[i], t)) # first label , first contagion time History[Name.index(source[i])] = [(source[i], 0)] while t < tmax: if t % 10 == 0 and t > 0: print("[output]", json.dumps({'msg': 'progress', 'data': int(20 + t / tmax * 30)}), flush=True) old_community = copy.deepcopy(community) old_history = copy.deepcopy(History) t = t + 1 for i in range(len(source)): # all propagation happens at the same time # if (i + 1) % 100 == 0: # print('Iteration:' + str(t) + '/' + str(tmax) + '---' + 'Source:' + str(i + 1) + '/' + str( # len(source)) + '---Time Elapsed---' + str( # (time.perf_counter() - start_s2)) + '---CommunitySize---' + str(len(community[i]))) for j in community[i]: if j[1] == t - 1: # newly join the community from last round propagation for s in G.neighbors(j[0]): if Centrality[Name.index(s)] < Centrality[Name.index(j[0])]: if s not in [k[0] for k in community[i]]: community[i].append((s, t)) History[Name.index(s)].append((source[i], t)) time_record.append((time.perf_counter() - start_s2)) if old_community == community or old_history == History: # no change in History or community membership break # check History and community are consistent # if sum(len(History[i]) for i in range(len(History))) != sum(len(community[i]) for i in range(len(community))): print('WRONG! COMMUNITY AND HISTORY DONT MATCH!') ave_membership = sum(len(History[i]) for i in range(len(History))) / len(History) # mh ave_size = sum(len(community[i]) for i in range(len(community))) / len(community) # mx # mh = len(S)/N * mx ? elapsed = (time.perf_counter() - start_s2) # plot local communities # from matplotlib import colors as mcolors colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) old_co = list(community) old_his = list(History) len_hist = [len(hh) for hh in History] r_crossover = len(len_hist) - len_hist.count(1) ############################################### # STEP 3&4: Aggregation of Small Communities ## ############################################### # print('##### STEP 3&4 #####') # print('--------------------') start_s3 = time.perf_counter() #save chain # import os # current_path = os.path.dirname(os.path.abspath(__file__)) # file_path = os.path.join(current_path, "oc.txt") #write # OC_ALL = get_oc(nodes) # with open(file_path,"w") as file: # for path in OC_ALL: # if path: # file.write(",".join(map(str,path)) + "\n") #read chain # with open(file_path, "r") as file: # OC_ALL = [list(map(int, line.strip().split(','))) for line in file] #get operation chain in any community community_dict = {} for comm in community: community_name = comm[0][0] community_dict[community_name] = comm # print(community_dict) # 注意community_dict中即保存了功能体结构 # 取消将community_dict保存至文件,改为将其直接传递至flask # community_file = open('community.csv', 'w', newline='') # community_csv = csv.writer(community_file) # for community_source_node in community_dict: # for member_node in community_dict[community_source_node]: # community_csv.writerow([member_node[0], member_node[1], community_source_node]) # community_file.close() # print("SOURCE", source) print("[output]", json.dumps({'msg': 'progress', 'data': 80}), flush=True) try: source_oc = get_communities_oc(community_dict) #get shared chain matrix OC_source = np.zeros((len(source),len(source))) for i,community_id_1 in enumerate(source): for j,community_id_2 in enumerate(source[i+1:],i+1):#只遍历上三角 chains_1 = set(map(tuple, source_oc[community_id_1])) chains_2 = set(map(tuple, source_oc[community_id_2])) shared_chains = chains_1.intersection(chains_2) # if i == 3 and j ==4: # print(shared_chains) shared_count = len(shared_chains) OC_source[i][j] += shared_count OC_source[j][i] += shared_count # 利用对称性将值赋给矩阵的另一半 except Exception as error: print(error, flush=True) # print(OC_source) # for i in range(len(source)): # for j in range(len(source)): # if i == j: # continue # else: # shared_oc = set(source_oc[i]).intersection(source_oc[j]) # OC_source[i][j] += len(shared_oc) # print(OC_source) # OC_source_new = transform_matrix(OC_source).astype(int) # # print(OC_source_new) # #epsilon # epsilon_max = int(OC_source_new.max()) # hierarchy_community = [list(source)] # epsilon_community_size = [(len(OC_source_new), 0)] # oc_temp = OC_source_new # oc_record = [list(oc_temp)] # phi_list = [] ## list of phi-epsilon # phi_ref_list = [] ## list of reference phi-epsilon # print("[output]", json.dumps({'msg': 'progress', 'data': 90}), flush=True) # for l in range(1,epsilon_max + 1): # # print('Epsilon:' + str(l) + '/' + str(epsilon_max) + '---' + 'Time Elapsed:' + str((time.perf_counter() - start_s3))) # temp = list(hierarchy_community[-1]) # merging_count = 0 # count of num of merging (in each epsilon) # while True: # ij = np.argwhere(oc_temp == l) # Note: l starts from 1 # # print("Ep = ",str(l),"ij = ",ij) # if len(ij) == 0: # no element == l # break # merging_count += 1 # #change # rand_index = np.random.choice(len(ij)) # ii, jj = ij[rand_index] # # ii = ij[0][0] # # jj = ij[0][1] # if type(temp[ii]) != list: # str to list # temp[ii] = [temp[ii]] # if type(temp[jj]) != list: # str to list # temp[jj] = [temp[jj]] # temp_com = temp[ii] + temp[jj] #merge community # tempp = [temp[ii],temp[jj]] # tempp_copy = list(tempp) # # print("--------------------") # # print("temp = ", temp, " Ep = ", str(l)) # # print("temp[ii] = ",temp[ii]," temp[jj] = ",temp[jj]," temp_com = ",temp_com," tempp = ",tempp," temp_copy = ",tempp_copy) # # print("--------------------") # if len(temp[ii]) == 1: # tempp_copy[0] = temp[ii][0] # if len(temp[jj]) == 1: # tempp_copy[1] = temp[jj][0] # #merge community # temp.remove(tempp[0]) # remove old small community 1 # temp.remove(tempp[1]) # remove old small community 2 # temp.append(temp_com) # #shrink oc_matrix # oc_temp = Matrix_shrink_oc(oc_temp,ii,jj) # # print("oc_temp = ") # # print(oc_temp) # oc_record.append(oc_temp) # # jac_record.append(jac_temp) # hierarchy_community.append(temp) # epsilon_community_size.append((len(oc_temp),l+1)) # print("hierarchy_community = ",hierarchy_community) # 注意hierarchy_community中保存了不同社团的层级关系,但是目前无法利用 ## unconnected components ## i think oc_bad can merge # if len(np.argwhere(oc_temp == int(OC_source_new.max()))) == len(oc_temp)*(len(oc_temp)-1):#int(OC_source_new.max())is dummy # break # 准备汇报flask的数据 result = { 'missionId': missionId, 'planId': planId, 'progress': 100, 'nodes': [], 'edges': [], } # 将节点和边直接放入nodes和edges result['nodes'] = fetchedData['nodes'].copy() # 删除可能存在的旧的group信息 for n in result['nodes']: for meta_index in range(len(n['meta'])-1, -1, -1): if 'group' in n['meta'][meta_index]: del n['meta'][meta_index] result['edges'] = fetchedData['edges'].copy() # print(result['edges']) # print(result['nodes']) # 构建功能体核心节点与功能体编号的映射 groups = {} group_index = 0 for leader in community_dict: groups[group_index] = leader for group_node in community_dict[leader]: # 修改节点的meta,标注其所属的功能体 node = [n for n in result['nodes'] if int(n['id']) == int(group_node[0])][0] for dicts in node['meta']: if type(dicts) != dict: print("ERROR, WRONG META", node['meta']) raise ValueError("ERROR, WRONG META") node['meta'].append({ 'group': group_index, }) group_index += 1 print("[output]", json.dumps({'msg': 'result', 'data': result}), flush=True) ## refine hierarchy_community 0 ## # for i in range(len(hierarchy_community[0])): # hierarchy_community[0][i] = [(hierarchy_community[0][i])] #get hierarchy_nodes # com_node_dic = {} # for i in range(len(source)): # com_node_dic[source[i]] = community_nodes[i] # hierarchy_nodes = [] # for hel_com in hierarchy_community:#对于层次的每一层 # level_temp = [] # for i in hel_com:#对于每层中的各个社团 # if not isinstance(i,list):#不是小社团 # nodes_all = set(com_node_dic[i]) if isinstance(com_node_dic[i], (list, set, tuple)) else set([com_node_dic[i]]) # level_temp.append(nodes_all) # else: # nodes_all = set() # for j in i: # nodes_all.update(com_node_dic[j] if isinstance(com_node_dic[j], (list, set, tuple)) else [com_node_dic[j]]) # level_temp.append(nodes_all) # hierarchy_nodes.append(level_temp) # # nodetemp = list(G.nodes) # sensors = 0 # 传感器 # deciders = 0 # 决策者 # influencer = 0 # 影响者 # for i in range(len(nodetemp)): # tps = G._node[i]['type'] # if tps == 'S': # sensors = sensors + 1 # elif tps == 'D': # deciders = deciders + 1 # else: # influencer = influencer + 1 # print("Num of node S:" + str(sensors)) # print("Num of node D:" + str(deciders)) # print("Num of node I:" + str(influencer)) # print('Num of nodes:'+ str(len(G.nodes))) # print('Num of edges:'+ str(len(G.edges))) # print('Num of operation chains:'+ str(len(OC_ALL))) # print('Num of sources:'+ str(len(source))) # print('Num of sinks:'+ str(len(sink))) # print('Num of isolated nodes:'+ str(len(iso))) # print('Num of leaf nodes:'+ str(len(leaf))) # print('Num of inner members:'+ str(inner)) # print("hierarchy_community = ",hierarchy_community) # print("epsilon_community_size = ",epsilon_community_size) # print("epsilon_max = ",epsilon_max) # # save files # g = nx.read_gpickle("./generate/Graph_gpickleSCS.gpickle") # # #1.leaf sink hub # # 为列表中的每一个节点添加属性,同时检查节点是否存在 # for node_list, node_type in zip([source, sink, iso, leaf], ["hub", "sink", "isolated", "leaf"]): # for node in node_list: # # 检查节点是否存在于图中 # if node in g: # g._node[node]["detect_node"] = node_type # else: # # 如果节点不存在,输出一个错误消息 # print(f"Node {node} not found in graph.") #2.small community # for community_index, nodes in enumerate(community_nodes): # for node in nodes: # if g.has_node(node): # g._node[node]["community"] = community_index #3.hierarchy_community # 遍历hierarchy_community和hierarchy_nodes来建立每个节点的属性 # for level, (communities, nodes) in enumerate(zip(hierarchy_community, hierarchy_nodes)): # for community_id, community_nodes in zip(communities, nodes): # # 如果community_id是列表,那么社团需要合并 # if isinstance(community_id, list): # for sub_community in community_id: # for node in community_nodes: # g._node[node] = {'community_id': sub_community, 'hierarchy_level': level} # else: # for node in community_nodes: # g._node[node] = {'community_id': community_id, 'hierarchy_level': level} # path = './generate/Graph_gml' + str(level)+'.gml' # nx.write_gml(g, path) # nx.write_gml(g, './generate/my_Graph_gml.gml') # nx.write_gpickle(g, "./generate/Graph_gpickleSCS.gpickle") if __name__ == '__main__': try: main_function() except Exception as error: print(str(error)) print(traceback.format_exc()) print("END ERROR")