api_graph.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. from django.contrib import auth
  2. from rest_framework.views import APIView
  3. from rest_framework.response import Response
  4. from rest_framework import status
  5. from rest_framework.authtoken.models import Token
  6. from rest_framework.authentication import BasicAuthentication, TokenAuthentication
  7. from .serializers import UserRegisterSerializer
  8. from django.middleware.csrf import get_token
  9. from django.contrib.auth import login
  10. from api.utils import *
  11. from api.models import Result, Graph, GraphToken, Plan
  12. from random import randint
  13. import json, csv
  14. class ViewGraphByToken(APIView):
  15. # 通过验证码看图——供VR使用
  16. authentication_classes = []
  17. permission_classes = []
  18. def get(self, request):
  19. print(request.GET)
  20. requestToken = request.GET.get('token')
  21. print(requestToken)
  22. try:
  23. token = GraphToken.objects.get(token=str(requestToken))
  24. except GraphToken.DoesNotExist:
  25. return failed(message="Token不存在")
  26. if token.checkExpire():
  27. return failed(message="Token已过期")
  28. graph = token.graph
  29. return success(data={
  30. 'nodes': graph.nodes,
  31. 'edges': graph.edges,
  32. })
  33. class GenerateGraph(APIView):
  34. # 生成图数据
  35. def get(self, request):
  36. user = request.user
  37. method = request.GET.get('method') # 以何种视图查看
  38. planId = request.GET.get('plan')
  39. try:
  40. plan = Plan.objects.get(id=planId)
  41. except Plan.DoesNotExist:
  42. print("获取结果的Plan失败")
  43. return failed(message="无法找到该结果对应规划")
  44. result = plan.own_result
  45. # 图表显示不生成图,仅做统计计算
  46. if method == 'chart':
  47. nodeJson = result.nodeFile.toJson()
  48. edgeJson = result.edgeFile.toJson()
  49. def isOriginEdge(edge):
  50. for meta in edge['meta']:
  51. if meta.get('optimize') == 'new' or meta.get('predict') == 'new':
  52. return False
  53. return True
  54. # 需要完善图表视图统计数据,根据具体图表类型决定
  55. # 通用图数据统计,包括SDI节点数量、边数量,各类型节点度数分布
  56. # 平均链长度,聚类系数即D节点间连接紧密程度
  57. # 分别统计SDI节点的数量和度数:sNodes,dNodes,iNodes
  58. sDegree = dDegree = iDegree = [0 for i in range(11)] # 度的取值范围0~10,共11个元素
  59. sNodes = [node for node in nodeJson if node['type'] == 'S']
  60. for s in sNodes:
  61. degree = len([edge for edge in edgeJson if edge['from'] == s['id'] or edge['to'] == s['id']])
  62. if degree <= 10:
  63. sDegree[degree] += 1
  64. else:
  65. sDegree[10] += 1
  66. dNodes = [node for node in nodeJson if node['type'] == 'D']
  67. for d in dNodes:
  68. degree = len([edge for edge in edgeJson if edge['from'] == d['id'] or edge['to'] == d['id']])
  69. if degree <= 10:
  70. dDegree[degree] += 1
  71. else:
  72. dDegree[10] += 1
  73. iNodes = [node for node in nodeJson if node['type'] == 'I']
  74. for i in iNodes:
  75. degree = len([edge for edge in edgeJson if edge['from'] == i['id'] or edge['to'] == i['id']])
  76. if degree <= 10:
  77. iDegree[degree] += 1
  78. else:
  79. iDegree[10] += 1
  80. # 查找所有OODA链路:chains
  81. chains = []
  82. for s in sNodes:
  83. stack = [(s, [s])] # (当前节点, 路径, 已访问节点)
  84. while stack:
  85. current, path = stack.pop()
  86. # 必须限制链路长度,否则无法结束,除限制长度外还可尝试将不同顺序节点的链路视为同一条,从而减少链路数量
  87. if len(path) > 5:
  88. continue
  89. # 终止条件:到达I节点
  90. if current['type'] == 'I':
  91. chains.append(path)
  92. continue
  93. # 遍历邻居,注意通用计算只统计原始图
  94. neighbors = [edge['to'] for edge in edgeJson if (isOriginEdge(edge) and edge['from'] == current['id'])] + [edge['from'] for edge in edgeJson if (isOriginEdge(edge) and edge['to'] == current['id'])]
  95. for neighborId in neighbors:
  96. neighbor = [node for node in nodeJson if node.get('id') == neighborId]
  97. if len(neighbor) != 1:
  98. return failed(message="查找OODA链路时出错:不存在的邻居节点")
  99. neighbor = neighbor[0]
  100. if neighbor in path: continue # 避免环路
  101. # 不能连线的几种情况
  102. if current['type'] == 'S' and neighbor['type'] == 'I':
  103. continue
  104. if current['type'] == 'D' and neighbor['type'] == 'S':
  105. continue
  106. stack.append((neighbor, path + [neighbor]))
  107. chainsNum = len(chains)
  108. chainsNumByLength = [0 for i in range(5)]
  109. for chain in chains:
  110. length = len(chain)
  111. if length >= 5:
  112. length = 5
  113. chainsNumByLength[length-1] += 1
  114. averageChainsLength = round(sum([len(chain) for chain in chains]) / chainsNum, 2)
  115. data = {
  116. 'sNodesNum': len(sNodes),
  117. 'dNodesNum': len(dNodes),
  118. 'iNodesNum': len(iNodes),
  119. 'sDegree': sDegree,
  120. 'dDegree': dDegree,
  121. 'iDegree': iDegree,
  122. 'chains': {
  123. 'num': chainsNum,
  124. 'averageLength': averageChainsLength,
  125. 'numByLength': chainsNumByLength,
  126. },
  127. }
  128. # 根据计算类型的不同分别计算特殊数据
  129. if result.plan.algorithm.type in ['optimize', 'predict'] :
  130. # 拓扑优化算法应该统计原有图的数据与优化后图的数据,优化应该仅优化边
  131. newChains = []
  132. for s in sNodes:
  133. stack = [(s, [s])] # (当前节点, 路径, 已访问节点)
  134. while stack:
  135. current, path = stack.pop()
  136. # 终止条件:到达I节点
  137. if current['type'] == 'I':
  138. newChains.append(path)
  139. continue
  140. # 遍历邻居,注意优化计算只统计新图
  141. neighbors = [edge['to'] for edge in edgeJson if (not isOriginEdge(edge) and edge['from'] == current['id'])] + [edge['from'] for edge in edgeJson if (not isOriginEdge(edge) and edge['to'] == current['id'])]
  142. for neighborId in neighbors:
  143. neighbor = [node for node in nodeJson if node.get('id') == neighborId]
  144. if len(neighbor) != 1:
  145. return failed(message="查找OODA链路时出错:不存在的邻居节点")
  146. neighbor = neighbor[0]
  147. if neighbor in path: continue # 避免环路
  148. # 不能连线的几种情况
  149. if current['type'] == 'S' and neighbor['type'] == 'I':
  150. continue
  151. if current['type'] == 'D' and neighbor['type'] == 'S':
  152. continue
  153. stack.append((neighbor, path + [neighbor]))
  154. newChainsNum = len(newChains)
  155. newAverageChainsLength = 0
  156. if newChainsNum != 0:
  157. newAverageChainsLength = round(sum([len(chain) for chain in newChains]) / newChainsNum, 2)
  158. data['newChains'] = {
  159. 'num': newChainsNum,
  160. 'averageLength': newAverageChainsLength,
  161. }
  162. return success(data=data)
  163. # 如果已经生成过图数据,则直接生成新的验证码
  164. if result.own_graphs.exists():
  165. graph = result.own_graphs.first()
  166. if method == 'web' or method == '3D' or method == '3d':
  167. return success(data={
  168. 'nodes': graph.nodes,
  169. 'edges': graph.edges,
  170. })
  171. elif method == 'VR':
  172. token = graph.generateToken()
  173. return success(data={
  174. 'token': token,
  175. })
  176. else:
  177. nodeJson = result.nodeFile.toJson()
  178. edgeJson = result.edgeFile.toJson()
  179. ######测试用,添加几个标签
  180. for node in nodeJson:
  181. node['meta'].append({'optimize': 'new'})
  182. node['meta'].append({'group': randint(1,5)})
  183. node['meta'].append({'predict': 'new'})
  184. for edge in edgeJson:
  185. edge['meta'].append({'optimize': 'new'})
  186. edge['meta'].append({'predict': 'new'})
  187. ########################
  188. # 两种3D视图的数据结构应该是一样的
  189. if result.plan.algorithm.type == 'optimize':
  190. # 拓扑优化算法生成的结果,只有网络结构数据
  191. # 检查合法性
  192. for node in nodeJson:
  193. if not 'id' in node or not 'type' in node:
  194. return failed(message="拓扑优化结果的节点文件存在问题")
  195. for edge in edgeJson:
  196. if not 'from' in edge or not 'to' in edge:
  197. return failed(message="边文件存在问题")
  198. # 对于优化算法,边的属性中应该有新旧的区分
  199. missingLabel = True
  200. for meta in edge['meta']:
  201. if 'optimize' in meta and meta['optimize'] in ['new', 'old']:
  202. missingLabel = False
  203. if missingLabel:
  204. return failed(message="无拓扑优化标签")
  205. elif result.plan.algorithm.type == 'group':
  206. # 功能体探测算法生成的结果
  207. # 检查合法性
  208. for node in nodeJson:
  209. if not 'id' in node or not 'type' in node:
  210. return failed(message="节点文件存在问题")
  211. # 对于功能体探测算法,节点的属性中应有功能体的编号
  212. missingLabel = True
  213. for meta in node['meta']:
  214. if 'group' in meta and type(meta['group']) == int:
  215. missingLabel = False
  216. if missingLabel:
  217. return failed(message="无功能体标签")
  218. for edge in edgeJson:
  219. if not 'from' in edge or not 'to' in edge:
  220. return failed(message="边文件存在问题")
  221. elif result.plan.algorithm.type == 'predict':
  222. # 链路演化预测算法生成的结果
  223. # 检查合法性
  224. for node in nodeJson:
  225. if not 'id' in node or not 'type' in node:
  226. return failed(message="节点文件存在问题")
  227. # 对于演化预测算法,节点的属性中应有新旧区分
  228. missingLabel = True
  229. for meta in node['meta']:
  230. if 'predict' in meta and meta['predict'] in ['new', 'old']:
  231. missingLabel = False
  232. if missingLabel:
  233. return failed(message="无演化预测标签")
  234. for edge in edgeJson:
  235. if not 'from' in edge or not 'to' in edge:
  236. return failed(message="边文件存在问题")
  237. # 对于演化预测算法,边的属性中应有新旧区分
  238. missingLabel = True
  239. for meta in edge['meta']:
  240. if 'predict' in meta and meta['predict'] in ['new', 'old']:
  241. missingLabel = False
  242. if missingLabel:
  243. return failed(message="无演化预测标签")
  244. graph = Graph.objects.createFromResult(result)
  245. graph.save()
  246. if method == 'web':
  247. return success(data={
  248. 'nodes': graph.nodes,
  249. 'edges': graph.edges,
  250. })
  251. if method == 'VR':
  252. token = graph.generateToken()
  253. return success(data={
  254. 'token': token,
  255. })